Interactive Rule Refinement for Fraud Detection
نویسندگان
چکیده
Credit card frauds are unauthorized transactions that are made or attempted by a person or an organization that is not authorized by the card holders. Fraud with general-purpose cards (credit, debit cards etc.) is a billion dollar industry and companies are therefore investing significant efforts in identifying and preventing them. It is typical to deploy mining and machine learning-based techniques to derive rules. However, such rules may not always capture the semantic reasons underlying the frauds that occur. For this reason, credit card companies often employ domain experts to manually specify rules that exploit general or domain knowledge for improving the detection process. Over time, however, as new (fraudulent and legitimate) transactions arrive, these rules need to be updated and refined to capture the evolving (fraud and legitimate) activity patterns. The goal of the RUDOLF system described in this paper is to guide and assist domain experts in this challenging task. RUDOLF automatically determines the “best” adaptation to existing rules to capture all fraudulent transactions and, respectively, omit all legitimate transactions. The proposed modifications can then be further refined by users and the process can be repeated until they are satisfied with the resulting rules. We show that the problem of identifying the best candidate adaptation is NP-hard in general and present PTIME heuristic algorithms for determining the set of rules to adapt. We have implemented our algorithms in RUDOLF and show, through experiments on real-life datasets, the effectiveness and efficiency of our solution.
منابع مشابه
Rudolf: Interactive Rule Refinement System for Fraud Detection
Credit card frauds are unauthorized transactions that are made or attempted by a person or an organization that is not authorized by the card holders. In addition to machine learning-based techniques, credit card companies often employ domain experts to manually specify rules that exploit domain knowledge for improving the detection process. Over time, however, as new (fraudulent and legitimate...
متن کاملPresenting a Model for Financial Reporting Fraud Detection using Genetic Algorithm
both academic and auditing firms have been searching for ways to detect corporate fraud. The main objective of this study was to present a model to detect financial reporting fraud by companies listed on Tehran Stock Exchange (TSE) using genetic algorithm. For this purpose, consistent with theoretical foundations, 21 variables were selected to predict fraud in financial reporting that finally, ...
متن کاملEntropy Based Fuzzy Rule Weighting for Hierarchical Intrusion Detection
Predicting different behaviors in computer networks is the subject of many data mining researches. Providing a balanced Intrusion Detection System (IDS) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. Many of the proposed methods perform well in one of the two aspects, and concentrate on a su...
متن کاملAnalysis of Credit Card Fraud Detection Techniques: based on Certain Design Criteria
Financial fraud is increasing significantly with the development of modern technology and the global superhighways of communication, resulting in the loss of billions of dollars worldwide each year. The companies and financial institution loose huge amounts due to fraud and fraudsters continuously try to find new rules and tactics to commit illegal actions. Thus, fraud detection systems have be...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کامل